Saturday 25 November 2017

Enkel Bevegelse Gjennomsnittet Varians


Utforsking av eksponentielt vektet Flytende Gjennomsnittlig volatilitet er det vanligste risikobilledet, men det kommer i flere smaker. I en tidligere artikkel viste vi hvordan du kan beregne enkel historisk volatilitet. (For å lese denne artikkelen, se Bruke volatilitet for å måle fremtidig risiko.) Vi brukte Googles faktiske aksjekursdata for å beregne den daglige volatiliteten basert på 30 dagers lagerdata. I denne artikkelen vil vi forbedre den enkle volatiliteten og diskutere eksponentielt vektet glidende gjennomsnitt (EWMA). Historisk Vs. Implisitt volatilitet Først kan vi sette denne metriske inn i litt perspektiv. Det er to brede tilnærminger: historisk og underforstått (eller implisitt) volatilitet. Den historiske tilnærmingen antar at fortid er prolog, vi måler historie i håp om at det er forutsigbart. Implisitt volatilitet, derimot, ignorerer historien den løser for volatiliteten underforstått av markedsprisene. Det håper at markedet vet best, og at markedsprisen inneholder, selv om det implisitt er, et konsensusoverslag over volatiliteten. Hvis du fokuserer på bare de tre historiske tilnærmingene (til venstre over), har de to trinn til felles: Beregn serien av periodisk avkastning Bruk en vektingsplan Først må vi beregne periodisk avkastning. Det er vanligvis en serie av daglige avkastninger der hver retur er uttrykt i kontinuerlig sammensatte vilkår. For hver dag tar vi den naturlige loggen av forholdet mellom aksjekursene (det vil si prisen i dag fordelt på pris i går, og så videre). Dette gir en rekke daglige avkastninger, fra deg til deg i-m. avhengig av hvor mange dager (m dager) vi måler. Det får oss til det andre trinnet: Det er her de tre tilnærmingene er forskjellige. I den forrige artikkelen (Bruke volatilitet for å måle fremtidig risiko) viste vi at det med noen akseptable forenklinger er den enkle variansen gjennomsnittet av kvadreret retur: Legg merke til at dette beløper hver periodisk avkastning, og deler deretter den totale av antall dager eller observasjoner (m). Så, det er egentlig bare et gjennomsnitt av den kvadratiske periodiske avkastningen. Sett på en annen måte, hver kvadret retur blir gitt like vekt. Så hvis alfa (a) er en vektningsfaktor (spesifikt en 1m), ser en enkel varians slik ut: EWMA forbedrer seg på enkel variasjon Svakheten i denne tilnærmingen er at alle avkastningene tjener samme vekt. Yesterdays (veldig nylig) avkastning har ingen større innflytelse på variansen enn de siste månedene tilbake. Dette problemet er løst ved å bruke det eksponentielt vektede glidende gjennomsnittet (EWMA), der nyere avkastning har større vekt på variansen. Det eksponentielt vektede glidende gjennomsnittet (EWMA) introduserer lambda. som kalles utjevningsparameteren. Lambda må være mindre enn en. Under denne betingelsen, i stedet for likevekter, vektlegges hver kvadret retur med en multiplikator på følgende måte: Risikostyringsfirmaet RiskMetrics TM har for eksempel en tendens til å bruke en lambda på 0,94 eller 94. I dette tilfellet er den første ( siste) kvadratiske periodiske avkastningen er vektet av (1-0.94) (.94) 0 6. Den neste kvadrerade retur er bare et lambda-flertall av den tidligere vekten i dette tilfellet 6 multiplisert med 94 5,64. Og den tredje forrige dagens vekt er lik (1-0,94) (0,94) 2 5,30. Det er betydningen av eksponensiell i EWMA: hver vekt er en konstant multiplikator (dvs. lambda, som må være mindre enn en) av den tidligere dagens vekt. Dette sikrer en variasjon som er vektet eller forspent mot nyere data. (For å lære mer, sjekk ut Excel-regnearket for Googles volatilitet.) Forskjellen mellom bare volatilitet og EWMA for Google er vist nedenfor. Enkel volatilitet veier effektivt hver periodisk avkastning med 0,196 som vist i kolonne O (vi hadde to års daglig aksjekursdata. Det er 509 daglige avkastninger og 1509 0,196). Men merk at kolonne P tildeler en vekt på 6, deretter 5,64, deretter 5,3 og så videre. Det er den eneste forskjellen mellom enkel varians og EWMA. Husk: Etter at vi summerer hele serien (i kolonne Q) har vi variansen, som er kvadratet av standardavviket. Hvis vi vil ha volatilitet, må vi huske å ta kvadratroten av den variansen. Hva er forskjellen i den daglige volatiliteten mellom variansen og EWMA i Googles tilfelle. Det er signifikant: Den enkle variansen ga oss en daglig volatilitet på 2,4, men EWMA ga en daglig volatilitet på bare 1,4 (se regnearket for detaljer). Tilsynelatende avviklet Googles volatilitet mer nylig, derfor kan en enkel varianse være kunstig høy. Dagens variasjon er en funksjon av Pior Days Variance Du vil legge merke til at vi trengte å beregne en lang rekke eksponentielt avtagende vekter. Vi vil ikke gjøre matematikken her, men en av EWMAs beste egenskaper er at hele serien reduserer til en rekursiv formel: Rekursiv betyr at dagens variansreferanser (dvs. er en funksjon av tidligere dager varians). Du kan også finne denne formelen i regnearket, og det gir nøyaktig samme resultat som longhandberegningen. Det står: Dagens varians (under EWMA) er lik ydersidens varians (veid av lambda) pluss yderdagskvadret retur (veid av en minus lambda). Legg merke til hvordan vi bare legger til to begreper sammen: Yesterdays weighted variance og yesterdays weighted, squared return. Likevel er lambda vår utjevningsparameter. En høyere lambda (for eksempel som RiskMetrics 94) indikerer tregere forfall i serien - relativt sett vil vi ha flere datapunkter i serien, og de kommer til å falle av sakte. På den annen side, hvis vi reduserer lambda, indikerer vi høyere forfall: vikene faller av raskere, og som et direkte resultat av det raske forfallet blir færre datapunkter benyttet. (I regnearket er lambda en inngang, slik at du kan eksperimentere med følsomheten). Sammendrag Volatilitet er den øyeblikkelige standardavviket for en aksje og den vanligste risikometrisk. Det er også kvadratroten av variansen. Vi kan måle variansen historisk eller implisitt (implisitt volatilitet). Når man måler historisk, er den enkleste metoden enkel varians. Men svakheten med enkel varians er alle returene får samme vekt. Så vi står overfor en klassisk avvei: vi vil alltid ha mer data, men jo flere data vi har jo mer vår beregning er fortynnet av fjernt (mindre relevant) data. Det eksponentielt vektede glidende gjennomsnittet (EWMA) forbedres på enkel varians ved å tildele vekt til periodisk retur. Ved å gjøre dette kan vi begge bruke en stor utvalgsstørrelse, men gi også større vekt til nyere avkastninger. (For å se en filmopplæring om dette emnet, besøk Bionic Turtle.) Artikkel 50 er en forhandlings - og oppgjørsklausul i EU-traktaten som skisserer trinnene som skal tas for ethvert land som. Beta er et mål for volatiliteten, eller systematisk risiko, av en sikkerhet eller en portefølje i forhold til markedet som helhet. En type skatt belastet kapitalgevinster pådratt av enkeltpersoner og selskaper. Kapitalgevinst er fortjenesten som en investor. En ordre om å kjøpe en sikkerhet til eller under en spesifisert pris. En kjøpsgrenseordre tillater handelsmenn og investorer å spesifisere. En IRS-regelen (Internal Revenue Service) som tillater straffefri uttak fra en IRA-konto. Regelen krever det. Det første salg av aksjer av et privat selskap til publikum. IPO er ofte utstedt av mindre, yngre selskaper som søker. Porteføljen VaR Value at Risk er et mål på det verste fallet som kan oppstå over en spesifisert holdingsperiode for en gitt sannsynlighet. Det er et mål som brukes mye for å vurdere markedsrisikoen som er knyttet til en gitt investering eller portefølje av investeringer. Portefølje VaR EXCEL Eksempel er et detaljert beregningsskjema som viser beregningen av VaR for en portefølje av seks instrumenter som består av 3 valutakontrakter (EUR, AUD og JPY) og tre varer (WTI, Gull og Sølv). Før beregning av VaR for porteføljen beregnes beregningen for hvert instrument i porteføljen ved hjelp av Simple Moving Average Variance Covariance Approach og Historical Simulation Approach. Det viser hvordan en graf av Trailing Volatilities er konstruert og beregning av et urimelig estimat av VaR-tallet ved hjelp av den maksimale volatiliteten fra denne etterfølgende volatilitetsserien. Den historiske simuleringsmetoden illustreres også ved hjelp av EXCELs Data Analysis Tool for histogrammer, brukt på den daglige returserien, for hver av valutaene og for porteføljen. Avledningen av Portefølje VaR for Varians Covariance Approach er gjort ved hjelp av den tradisjonelle varians - og kovariansmatrisemetoden, samt ved bruk av et kutt ved å beregne en veid gjennomsnittlig avkastningsserie for porteføljen. Datatabellfunksjonaliteten til EXCEL brukes til å beregne 10-dagers holdbar VaR for varierende odds (som oppgitt av konfidensnivået som brukes). Ta en titt på vår kurs kursbutikk for mer kurs på Value at Risk-konseptet. Spesielt: Relaterte innlegg: Om forfatteren Jawwad Farid Jawwad Farid har bygd og implementert risikomodeller og backofficesystemer siden august 1998. Arbeide med klienter på fire kontinenter hjelper han bankfolk, styremedlemmer og regulatorer å ta markedsrelevant tilnærming til risikostyring . Han er forfatter av Models at Work og Option Greeks Primer, begge utgitt av Palgrave Macmillan. Jawwad er en stipendiat av aktuarer, (FSA, Schaumburg, IL), han har en MBA fra Columbia Business School og er en datalogi uteksaminert fra (NUCES FAST). Han er et tilleggsfaglig medlem på SP Jain Global Management School i Dubai og Singapore hvor han underviser i risikostyring, avledende priser og entreprenørskap. En tanke på ldquoPortfolio VaRrdquo Kommentarer er avsluttet. Portefølje VaR Varians Covariance Approach ved hjelp av Short Cut-teknikken PROOF Variance CoVariance VaR Shortcut-tilnærming Portefølje VaR er et svært viktig mål for å vurdere markedsrisikoen som er knyttet til hele en portefølje av en enhet. Det er et mål hvis beregning ofte er knyttet til hjerteforbrenning, fordi risikostyreren ser på den svært arbeidsintensive konstruksjonen av varianskovariansmatrisen. I våre kurs på Value at Risk, beregner Value at Risk amp Portefølje VaR. Vi foreslår et middel som skal gi brukeren et visst nivå av komfort - en snarvei tilnærming, introdusert av Columbia University Business Schools Professor Mark Broadie. til matrisen ved hjelp av en veid gjennomsnittlig serie av porteføljeavkastning. Imidlertid er det menneskelig natur å stille spørsmål til en doktorsrekkefølge for å søke en annen mening, og weve hadde en rekke mennesker spør oss om hvorvidt vårt kortsiktige mer effektive, praktiske og praktiske versjon av beregningsporteføljen VaR egentlig gir porteføljen VaR avledet ved hjelp av den tradisjonelle Variance Covariance-matrisen. Eller var resultatene bare tilfeldig, matematisk magi i seg selv PROOF, ligger i den meget kjente statistiske ligningen: Varians (aXbY) en 2 Varians (X) b 2 Varians (Y) 2abKovarians (X, Y) Kvadratroten av variansen er standardavvik som, som du vet, i Value at Risk-terminologi er volatilitet, oppbyggingen av Simple Moving Average Variance Covariance (SMA VCV) tilnærming til beregning av metriske. Den tradisjonelle Variance Covariance Approach-metoden anvender konstruksjonen av den beryktede varians-kovariansmatrisen, som i statistiske likningsbetingelser er betegnet av høyre side (RHS) av ovennevnte ligning - en sammensetning av kvadratiske vekter, individuelle avkastningsavvik og covariances mellom par av variabler. Vår shortcut tilnærming fokuserer på ofte glemt venstre side (LHS) av ligningen, det vil si variansen til den vektede gjennomsnittlige summen av variabler. Hvis den veide gjennomsnittlige summen av variabler, aXbY Z, så er alt vi trenger, Z-variansen. I forhold til verdien ved risikobalking er variablene den daglige avkastningsserien for hvert aktiv i porteføljen den veide gjennomsnittlige summen av variabler, dvs. Z , er den veide gjennomsnittlige summen av den daglige avkastningsserien Z er derfor porteføljens returserie. Og derfor ved å beregne Variansen av Z, den veide daglige returserien, firkantet rotering av resultatet og anvendelse av riktig multiplikatorfaktor som representerer konfidensnivået og holdingsperioden, kommer vi til det enkle, flytende gjennomsnittlige varianskovarians VaR-resultatet. Lavt og se beviset på vår shortcut approachit er virkelig lik SMA VCV VaR ved hjelp av den tradisjonelle varianskovariansmetoden. Det skal imidlertid bemerkes at hvis du bruker EXCEL-funksjonene til VAR () og COVAR () for å beregne avvikene og kovariansen, vil det være en liten forskjell i resultater oppnådd fra de tradisjonelle og effektive metodene. Feilen ligger i den tradisjonelle tilnærmingen, da det er en inkonsekvens mellom Varians - og Covariance-formlene som ligger til grunn for EXCEL-funksjonene. COVAR () - formelen i EXCEL bruker en prøvestørrelse på n i divisoren, mens VAR () benytter en prøvestørrelse på n-1. En enkel justering kan gjøres til COVAR () før bruk i RHS i ligningen ovenfor for å fjerne denne avviket, spesielt: Justert COVAR () COVAR () n (n-1). Alternativt kan vi i stedet for RHS gitt ovenfor bruke følgende: a 2 Varians (X) b 2 Varians (Y) 2abKorrelasjon (X, Y) StandardDeviation (X) StandardDeviation (Y) Tilbakekall statistisk korrelasjon (X, Y) Covariance X, Y) StandardDeviation (X) StandardDeviation (Y) I EXCEL er funksjonen CORREL () gitt som følger: Dette antyder implicit konsistens mellom varians - og kovariansformler, som divisorene av hver avbryter. Bruk av CORREL () i stedet for COVAR () fjerner uoverensstemmelsen mellom resultatene som er oppnådd ved hjelp av den tradisjonelle tilnærmingen til SMA VCV Value-at-Risk og resultater utledet ved hjelp av shortcut-tilnærmingen. Relaterte innlegg: 2.1 Moving Average Models (MA modeller) Tidsseriemodeller kjent som ARIMA-modeller kan inneholde autoregressive vilkår og / eller bevegelige gjennomsnittlige betingelser. I uke 1 lærte vi et autoregressivt uttrykk i en tidsseriemodell for variabelen x t er en forsinket verdi på x t. For eksempel er et lag 1 autoregressivt uttrykk x t-1 (multiplisert med en koeffisient). Denne leksjonen definerer glidende gjennomsnittlige vilkår. En glidende gjennomsnittlig term i en tidsseriemodell er en tidligere feil (multiplisert med en koeffisient). La (wt overset N (0, sigma2w)), noe som betyr at w t er identisk, uavhengig distribuert, hver med en normalfordeling med gjennomsnittlig 0 og samme varians. Den første ordre-flytende gjennomsnittsmodellen, betegnet med MA (1), er (xt mu wt theta1w) Den andre ordens bevegelige gjennomsnittsmodellen, betegnet med MA (2), er (xt mu wt theta1w theta2w) , betegnet med MA (q) er (xt mu wt theta1w theta2w punkter thetaqw) Merknad. Mange lærebøker og programvare definerer modellen med negative tegn før betingelsene. Dette endrer ikke de generelle teoretiske egenskapene til modellen, selv om den ikke flipper de algebraiske tegnene på estimerte koeffisientverdier og (unsquared) termer i formler for ACFer og avvik. Du må sjekke programvaren for å verifisere om negative eller positive tegn har blitt brukt for å skrive riktig estimert modell. R bruker positive tegn i sin underliggende modell, som vi gjør her. Teoretiske egenskaper av en tidsrekkefølge med en MA (1) modell Merk at den eneste ikke-nullverdien i teoretisk ACF er for lag 1. Alle andre autokorrelasjoner er 0. Således er en prøve-ACF med en signifikant autokorrelasjon bare ved lag 1 en indikator på en mulig MA (1) modell. For interesserte studenter er bevis på disse egenskapene et vedlegg til denne utdelingen. Eksempel 1 Anta at en MA (1) modell er x t 10 w t .7 w t-1. hvor (wt overset N (0,1)). Dermed er koeffisienten 1 0,7. Den teoretiske ACF er gitt av Et plott av denne ACF følger. Plottet som nettopp er vist er den teoretiske ACF for en MA (1) med 1 0,7. I praksis vil en prøve vanligvis ikke gi et slikt klart mønster. Ved hjelp av R simulerte vi n 100 prøveverdier ved hjelp av modellen x t 10 w t .7 w t-1 hvor w t iid N (0,1). For denne simuleringen følger en tidsserie-plott av prøvedataene. Vi kan ikke fortelle mye fra denne plottet. Prøven ACF for de simulerte dataene følger. Vi ser en spike i lag 1 etterfulgt av generelt ikke signifikante verdier for lags forbi 1. Merk at prøven ACF ikke samsvarer med det teoretiske mønsteret til den underliggende MA (1), som er at alle autokorrelasjoner for lags forbi 1 vil være 0 . En annen prøve ville ha en litt annen prøve-ACF vist nedenfor, men vil trolig ha de samme brede funksjonene. Terapeutiske egenskaper av en tidsserie med en MA (2) modell For MA (2) modellen er teoretiske egenskaper følgende: Merk at de eneste ikke-nullverdiene i teoretisk ACF er for lags 1 og 2. Autokorrelasjoner for høyere lags er 0 . En ACF med signifikant autokorrelasjoner på lags 1 og 2, men ikke-signifikante autokorrelasjoner for høyere lags indikerer en mulig MA (2) modell. iid N (0,1). Koeffisientene er 1 0,5 og 2 0,3. Fordi dette er en MA (2), vil den teoretiske ACF bare ha null nullverdier ved lags 1 og 2. Verdier av de to ikke-null-autokorrelasjonene er Et plot av teoretisk ACF følger. Som nesten alltid er tilfellet, vil prøvedataene ikke oppføre seg så perfekt som teori. Vi simulerte n 150 utvalgsverdier for modellen x t 10 w t .5 w t-1 .3 w t-2. hvor det er N (0,1). Tidsserien av dataene følger. Som med tidsserien for MA (1) eksempeldata, kan du ikke fortelle mye om det. Prøven ACF for de simulerte dataene følger. Mønsteret er typisk for situasjoner der en MA (2) modell kan være nyttig. Det er to statistisk signifikante pigger på lags 1 og 2 etterfulgt av ikke-signifikante verdier for andre lags. Merk at på grunn av prøvetakingsfeil, samsvarte ACF ikke nøyaktig det teoretiske mønsteret. ACF for General MA (q) Modeller En egenskap av MA (q) - modeller generelt er at det finnes ikke-null autokorrelasjoner for de første q lagene og autokorrelasjonene 0 for alle lagene gt q. Ikke-entydighet av sammenhengen mellom verdier av 1 og (rho1) i MA (1) Modell. I MA (1) - modellen, for en verdi på 1. Den gjensidige 1 1 gir samme verdi. For eksempel, bruk 0,5 for 1. og bruk deretter 1 (0,5) 2 for 1. Du får (rho1) 0,4 i begge tilfeller. For å tilfredsstille en teoretisk begrensning kalt invertibility. vi begrenser MA (1) - modeller for å ha verdier med absolutt verdi mindre enn 1. I eksemplet som er gitt, vil 1 0,5 være en tillatelig parameterverdi, mens 1 10,5 2 ikke vil. Invertibility av MA modeller En MA-modell sies å være invertibel hvis den er algebraisk tilsvarer en konvergerende uendelig rekkefølge AR-modell. Ved konvergering mener vi at AR-koeffisientene reduseres til 0 da vi beveger oss tilbake i tid. Invertibility er en begrensning programmert i tidsserier programvare som brukes til å estimere koeffisientene av modeller med MA termer. Det er ikke noe vi ser etter i dataanalysen. Ytterligere opplysninger om inverterbarhetsbegrensningen for MA (1) - modeller er gitt i vedlegget. Avansert teorienotat. For en MA (q) modell med en spesifisert ACF, er det bare en inverterbar modell. Den nødvendige betingelsen for invertibilitet er at koeffisientene har verdier slik at ligningen 1- 1 y-. - q y q 0 har løsninger for y som faller utenfor enhetens sirkel. R-kode for eksemplene I eksempel 1, plotte vi den teoretiske ACF av modellen x t10 w t. 7w t-1. og deretter simulert n 150 verdier fra denne modellen og plottet prøve tidsseriene og prøven ACF for de simulerte dataene. R-kommandoene som ble brukt til å plotte den teoretiske ACF var: acfma1ARMAacf (mac (0,7), lag. max10) 10 lag av ACF for MA (1) med theta1 0,7 lags0: 10 skaper en variabel som heter lags som varierer fra 0 til 10. plot (lags, acfma1, xlimc (1,10), ylabr, typh, main ACF for MA (1) med theta1 0,7) abline (h0) legger til en horisontal akse på plottet. Den første kommandoen bestemmer ACF og lagrer den i en gjenstand kalt acfma1 (vårt valg av navn). Plot-kommandoen (den tredje kommandoen) plots lags versus ACF-verdiene for lags 1 til 10. ylab-parameteren merker y-aksen og hovedparameteren setter en tittel på plottet. For å se de numeriske verdiene til ACF, bruk bare kommandoen acfma1. Simuleringen og tomtene ble gjort med følgende kommandoer. xcarima. sim (n150, liste (mac (0.7))) Simulerer n 150 verdier fra MA (1) xxc10 legger til 10 for å gjøre gjennomsnitt 10. Simuleringsstandarder betyr 0. Plot (x, typeb, mainSimulated MA (1) data) acf (x, xlimc (1,10), mainACF for simulerte prøvedata) I eksempel 2 skisserte vi den teoretiske ACF av modellen xt 10 wt .5 w t-1 .3 w t-2. og deretter simulert n 150 verdier fra denne modellen og plottet prøve tidsseriene og prøven ACF for de simulerte dataene. R-kommandoene som ble brukt var acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 plot (lags, acfma2, xlimc (1,10), ylabr, typh, hoved ACF for MA (2) med theta1 0,5, theta20.3) abline (h0) xcarima. sim (n150, liste (mac (0,5, 0,3)) xxc10 plot (x, typeb, hoved Simulert MA (2) Serie) acf (x, xlimc (1,10) mainACF for simulert MA (2) Data) Vedlegg: Bevis på egenskaper av MA (1) For interesserte studenter, her er bevis for teoretiske egenskaper av MA (1) modellen. Varians: (tekst (xt) tekst (mu wt theta1 w) 0 tekst (wt) tekst (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Når h 1, er det forrige uttrykket 1 w 2. For ethvert h 2, . Årsaken er at ved definisjon av uavhengighet av wt. E (w k w j) 0 for noen k j. Videre, fordi w t har middelverdien 0, E (w jw j) E (w j 2) w 2. For en tidsserie, Bruk dette resultatet for å få ACF gitt ovenfor. En inverterbar MA-modell er en som kan skrives som en uendelig rekkefølge AR-modell som konvergerer slik at AR-koeffisientene konvergerer til 0 mens vi beveger oss uendelig tilbake i tiden. Vel demonstrere invertibility for MA (1) modellen. Vi erstatter deretter forholdet (2) for w t-1 i ligning (1) (3) (zt wt theta1 (z-theta1w) wt theta1z-tet2w) Ved tid t-2. (2) blir vi da erstatter forholdet (4) for w t-2 i ligning (3) (zt wt theta1z-teteta21wt theta1z-teteta21 (z-theta1w) wt theta1z-theta12z theta31w) Hvis vi skulle fortsette uendelig), ville vi få den uendelige rekkefølgen AR-modellen (zt wt theta1z - theta21z theta31z - theta41z prikker) Merk imidlertid at hvis 1 1, vil koeffisientene som multipliserer lagene av z, øke (uendelig) i størrelse når vi beveger oss tilbake i tid. For å forhindre dette, trenger vi 1 lt1. Dette er betingelsen for en inverterbar MA (1) modell. Uendelig Order MA-modell I uke 3 ser du at en AR (1) - modell kan konverteres til en uendelig rekkefølge MA-modell: (xt - mu wt phi1w phi21w prikker phik1 w dots sum phij1w) Denne summeringen av tidligere hvite støybetingelser er kjent som årsakssammenheng av en AR (1). Med andre ord, x t er en spesiell type MA med et uendelig antall vilkår som går tilbake i tid. Dette kalles en uendelig ordre MA eller MA (). En endelig ordre MA er en uendelig orden AR og en hvilken som helst endelig rekkefølge AR er en uendelig rekkefølge MA. Tilbakekall i uke 1, bemerket vi at et krav til en stasjonær AR (1) er at 1 lt1. Lar beregne Var (x t) ved hjelp av årsakssammensetningen. Dette siste trinnet bruker et grunnfakta om geometrisk serie som krever (phi1lt1) ellers ser serien ut. Navigasjon

No comments:

Post a Comment